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The behavior of a classical charged particle moving between two coaxial infinitely long cylinders
is studied. The inner cylinder is a tightly wound solenoid with a small radius carrying an oscillating
current with frequency wo. The outer cylinder carries no current and is formed by a thin dielectric
material. We study the regime wo/c < 1/b, where b is the radius of the outer cylinder. We find
that for low enough wo there is no chaos in the phase space of the particle. However, the emergence
of resonances and chaos can be observed as wo is increased above a threshold value. Also, chaos in
the phase space is observed as the magnitude of current is increased.

PACS number(s): 05.45.+b, 41.20.Bt

I. INTRODUCTION solenoid, there will be time varying electric and magnetic
fields in all three regions. The electromagnetic field does
not behave as if the walls are hard. At r = a there is a
surface current. At r = b there is an extremely thin di-
electric. The magnetic field will be discontinuous across
the wall at » = a, but will be continuous across the wall
at r = b. In fact, we can assume the wall at r = b does
not exist as far as the electromagnetic field is concerned.
It does exist for the particle.

We will assume that there are no free charges, except
for the particle. Therefore, the scalar potential is identi-
cally zero everywhere, but there will be a vector potential

A(r,t) = Ay(r, t)dg From Maxwell’s equations the vector

There are few examples of measurable conservative sys-
tems in which primary nonlinear resonances and chaos
suddenly appear in the phase space as certain control-
lable parameters of the system are varied. In this Brief
Report we shall show that it can happen to a classical
particle confined to a cylindrical box and driven by a
time-periodic electromagnetic vector potential. We will
examine the motion of a classical particle of mass m and
charge ¢ moving in the region outside a tightly wound
solenoid with radius a carrying a monochromatic alter-

nating current of the form J(r,t) = Jo §(r —a) cos(wot) ¢.

[We use cylindrical coordinates (r, ¢, z), where the z axis
coincides with the solenoid axis.] There is an outer cylin-
der with radius b made of a thin dielectric material which
confines the particle. The region inside the solenoid is
empty space, as are the regions between the cylinders
and outside the cylinders. The particle, which moves in
the space between the solenoid and the outer cylinder
(the region a < r < b), behaves as if the two walls are
infinitely hard. Because of the oscillating current on the

A(r,t) =

potential satisfies

a9 (10 o?
— —_——— A — ——
ar (7‘ or (r ¢)) oK Gz 44
—poJo 8(r — a) cos(wot), (1)
where € is the permittivity, o is the permeability, and

A, = A, = 0 [1]. In the region, a < r < b, Eq. (1) has
the solution

toJo J1(kr<)[Ni(krs) cos(wot) — J1(krs) sin(wot)] 3

where r5 (r<) is the larger (smaller) of r and a, k =
wo/c, and J, and N, are Bessel functions of order v.
If the frequency of the oscillating current is low enough
(kbk1), the vector potential in the region between the
two walls is given by A(r,t) >~ 22 cos(wot) #, where ag =
oJoa?/2. As a result, for low frequencies the electric
field is E = — 82 = 2o sin(wot) ¢ and the magnetic
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k Jo(ka)Nl(ka) — J]_(ka)No(ka) ’ (2)

field B = VXA = 0 in the region between the two walls.
With this vector potential, the Hamiltonian for the
particle between the two walls takes the form

H(t) = 1’2_ [Py — garo cos(wot)]?

2m + 2mr?
P2
+ 2 1 v(r) + Vo). (3)
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Va and V,, are the potentials associated with the infinitely
hard walls at r = a and r = b (V, = 0 for r > a and
Vo=o0forr <a,and V;, =0 for »r < b and V}, = oo for
r > b). The Hamiltonian is most conveniently written in
cylindrical coordinates. It depends only on the the radius
and not on the azimuthal angle ¢, or on 2. Therefore
p. and py are constants of the motion. Without loss of
generality, we can let p, = 0 and py = Iy > 0. We
now divide the Hamiltonian into two parts, H(t) = Ho +
H,(t), where Hy is a time-independent part,
p2

2m 2m (4)

with L?=13 + ¢%ad/2 (assume L > 0), and Hy(t) is a
time-periodic part,

Ho—

glyag cos(wot) = g%al cos(2w0t)

H,(t) = —

(5)

Before we examine the behavior of this system it is useful
to rewrite the full Hamiltonian H (¢) in terms of the action
angle variables of the time-independent Hamiltonian Hy.

In Sec. II, we obtain the action-angle variables for the
system whose dynamics is governed by Hy and we de-
termine the natural frequencies of the system, w = alf]" .
In Sec. III, we use the full Hamiltonian to determine the
resonance conditions, and from numerical results we ob-
serve emergence, bifurcation, and overlap of primary res-
onances by varying wg and gap. Finally, in Sec. IV, we
make some concluding remarks.

mr2 4mr?

II. TIME-INDEPENDENT HAMILTONIAN H,

In this section we consider the case when the motion
is governed by the time-independent Hamiltonian Hy [cf.
Eq. (4)]. We shall restrict ourselves to an inner radius a
small enough that the particle never hits the inner wall.
This will be the case if the angular momentum is such
that L > ay/2mFEy. The particle will bounce between the
outer wall, » = b, and an inner turning point, ro = —=£

V2mEo
(the point where p, = 0). Between collisions with the
walls, the motion of the particle is governed by Hamilto-
nian equations, % = —‘95 = mrs and d’ = 'SB—I;Q =&,
These may be integrated [for initial condltlons, r(0) =ro
and p(0) = 0] to give

2E0 [ L T T
t2 - <t =
E2 + for 5 <t< 5 (6)

where T' = E. 2mEyb? — L2 is the period of the motion.
The momentum is given by

V2mEy t

vV 4E2 + 82

It is useful to obtain a canonical transformation to
action-angle variables for the radial coordinates

=1 _ V2mEo /b2 2 —1(To
J—zﬂ_fp,dr-———?r—[ b2 —rd —rgcos (—b—) .

pr(t) = for —

The angle variable satisfies the equation

1229

an _ 27I'E0 (9)
8J  2mb?E, — L?’

where w = 6 = 2r/T is the natural frequency of the
motion. Note that the frequency w has a minimum value

given by wmin = frbe; for Eg = me Since all quantities
in the expression for w are constants of the motion (for
dynamics governed by Hp), the angle at time ¢ is simply
6(t) = wt [with the convention that #(0) = 0 at the
turning point]. In Fig. 1, we plot the frequency w as
a function of energy Ey for m = 1, L = 1, and b = 10.
For these parameters, the minimum frequency occurs at
W = Wmin = g5 for energy Eo = 0.01. This corresponds
to the longest period orbit allowed by the system for these
parameter values.

Since the frequency has a minimum value, we find that
there are two possible energies, and therefore two possi-
ble trajectories, for each frequency. It will prove useful
to write the energy in terms of the minimum frequency
Wmin. 1f we let w = zwy,in, then we find

2L2
Eizw—[u 1—%].
T

6 =

(10)

The inner turning point of an orbit with energy Ej is
= L/v/2mE,. Therefore, the positions of the inner
turning points for orbits of energy E, or E_ are given

by
-1/2
r?f:-i— b [1:&,/1 1] .
2mE 4 \/—:1;

The canonical transformation from radial variables
(pr,7) to action-angle variables (J, ) is given by

(11)

w2L2 4+ 0%2(2mb2Ey — L?)
J,0 12
r(5,6) = \/ o (12)
and
2mE,)(2mb2Ey — L2
pr(7,0) = 2 [(2mEo)@mb°Ey — L7) (13)
L? + % (2mb2E, — L?)
for —m<6<m.
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FIG. 1. Frequency w = 27wEo/+/2mb2Eo — L2 versus Ep
for m = 1, b = 10, and L = 1. The minimum frequency
Wmin = 7/50 occurs at By = 0.01.
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IIT. FULL DYNAMICS

Let us now write the full Hamiltonian H(t) in terms
of action-angle variables for the time-independent system
Hy. It takes the form

glgo q’ad
H(t) = Eo(J) — gy cos(wot) + " cos(2wot). (14)

The quantities 772(J,6) are even periodic functions of
the angle 6. Therefore we can expand them in a Fourier
cosine series. If we do this, then Eq. (14) can be written
in the form

H(t) = Eo(J) — ql;;:() i by (J) cos(nfd — wot)

n=—oo

(15)

Pof <
+%m I_X_: b1 (J) cos(10 — 2wot),

™
where b,, = 2";E° I [L2+§0(2°:lf:;i_m)].

The two sets of traveling cosine waves in Eq. (15)
give rise to infinite sets of “primary” nonlinear resonance
zones in the phase space of the system [2]. A “primary”
resonance (as opposed to a fractional resonance) occurs
when the frequency wg of the vector potential is equal
to an integer multiple of the natural frequency w. The
cosine waves which are proportional to g give rise to res-
onance zones which dominate the phase space for small
gag, while those proportional to a2 give rise to resonance
zones which dominate the phase space for large gag. We
will write the resonance conditions for the two sets sepa-
rately.

A. “ag” resonances
The resonance condition is wg = nw(J}) or
wo 2w Eo(J})
n Jamb?Eo(Jr) — L2

(16)

where J, locates the position of the nth resonance zone
in the (J,0) phase space. When wy < Wmin, no primary
resonance of the “aq” type can occur.

B. “a2” resonances
The resonance condition is 2wo = lw(J%) or

2wg 2w Eo(J])

I~ \2mb2Eo(J]) = L’

(17)

where JJ locates the position of the Ith resonance zone
in the (J,0) phase space. No “a2” primary resonances
can occur if wg < wWmin/2.

We can now use the resonance conditions in Egs. (16)
and (17) to locate the resonance zones in phase space
when goyp is small. Approximate values of the energies of
trajectories in the region of resonances are given by Eq.
(10). An “ap” resonance occurs when the external field

frequency wg = nw or ¢ = mol—, An “a2” resonance
min

is given by the condition that wy = }lw or & = 220,

min

We can use Eq. (11) to locate the region in phase space
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where we expect to find a resonance.

Let us now examine how the resonances emerge in the
phase space and bifurcate when the external field fre-
quency has values woz%wmin. In Fig. 2, we show the
behavior of the phase space in this region of external
field frequency by gradually changing wo near wmin/2.
In Fig. 2, weuse Iy = 1, m =1, b = 10 (Wmin ~ &),
and gqay = %. Because of the small value of gag, we
expect the resonance conditions in Egs. (16) and (17)
to give good predictions. The lowest external field fre-
quency at which a resonance can be induced in the system
iS Wmin/2 >~ 0.017. This is an “a2” resonance. We de-
fine the threshold frequency ws, as 0.01w. In Fig. 2 we
show a sequence of plots, with wo ranging from 0.9950 w;;,
to 1.053 wpn, which shows the emergence and bifurca-
tion of the first “a?” primary resonance. In Fig. 2(a),
wo = 0.9950 wy, and no resonance exists. In Fig. 2(b),
wo = wyy, and a single resonance has emerged. (A simi-
lar phenomenon was observed in [3].) In Figs. 2(c) and
2(d), the bifurcation process starts to become visible. In
Fig. 2(e) the original single resonance has split into two
distinct resonances. The resonance that has its island on
the left has its unstable fixed point at » = 10 (the surface
of the outer cylinder). On the other hand, the resonance
on the right has its stable fixed point at r = 10 and
pr >~ £0.7. As we increase wg further, the resonances
continue to move apart.

In Fig. 3, we show the case wy = % ~ %wmin. For
this case we have both “a2” and “aqp” first primary res-
onances. They can be located with the help of Eq.

8

(11). The “aj” first primaries are located at = § or

'r(T = 1.910 and r; = 9.816. The “ap” first primaries are

FIG. 2. Strobe plots of the (p,,r) phase space for m = 1,
lp =1, b =10, geo = 32 (Wmin/2 =~ 0.017 = wen), and
(a) wo = 0.9950 wih, (b) wo = win, (¢) wo = 1.005 wen, (d)
wo = 1.010 wen, (€) wo = 1.020 w:p, and (f) wo = 1.053 wyp.
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FIG. 3. Strobe plots of the (p.,r) phase space for m = 1,

ly =1,b=10, goo = %, = 2% ~ 2 W,in. (a) Large

and wo = w3
scale view. (b) Magnification of the region 8.7<r<10.

located at z = % or r§ =4.114 and ry = 9.114.

It is also interesting to examine the phase space for in-
creasing values of the external field amplitude gag, where
the predictions given by the resonance conditions Egs.
(16) and (17) break down since they neglect terms of or-
der gap and g%02. In Fig. 4, we show the phase space for

= _ 10 20 50
Wo = g5 ™~ Wmin and qao = 35—, 30-) 30n- We see the
emergence of global chaos with increasing strength of the

solenoid current.

IV. DISCUSSION

In this Brief Report, we have observed the creation and
the emergence of a primary resonance when the frequency
wo of the electromagnetic vector potential reaches the
value wp,in/2. An interesting bifurcation pattern emerges

— 06, , 10

FIG. 4. Strobe plot of the (p,,r) phase space for m = 1,
lg =1,b=10, and wo = & ~ Wmin. (3) qao = 35, (b)
qap = 220(;, and (c) gao = 55-.

as we increase wg. We have also observed the overlap of
resonant zones and the onset of chaos as the magnitude
of the current (represented by gayp) was increased.

In the discussion above, we set the radius of the inner
cylinder to the value a = 0.1, which is very small com-
pared to the radius of the outer cylinder, b = 10. When a
is larger, the inner cylinder should be taken into account
even with small gog. But we can expect to obtain similar
results by the same method of analysis.
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